НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ
normal distribution). Понятие, применяемое для описания распределения каких-либо данных, выраженных графически в виде симметричной, выгнутой в виде колокола кривой.
normal distribution). Понятие, применяемое для описания распределения каких-либо данных, выраженных графически в виде симметричной, выгнутой в виде колокола кривой.
непрерывное распределение случайной переменной, имеющей равные среднее, медиану и моду. Так, нормальная кривая симметрична, колоколообразна. Параметрическая статистика предполагает, что родственная популяция имеет нормальное распределение. В действительности это лишь приблизительно, но считается приемлемым для выполнения тестирования.
(normal distribution) График плотности этого распределения имеет вид колокола, Такая форма – следствие вариаций большого числа независимых и сторонних случайных факторов. Плотность нормально распределенной случайной величины х со средней величиной ? и дисперсией ?2 имеет вид: f(x)=1/?(2??2)exp–1/2(x–?)2/?2 Нормальное распределение симметрично относительно своего среднего значения, поскольку f(?+z)=f(?–z) для всех значений z. Тот факт, что х имеет нормальное распределение со средней величиной ? и дисперсией ?2, обозначается так: х ? N(?,?2). Если х имеет нормальное распределение, то около 68% случаев располагаются между -? и +? от ?, около 95% случаев – между -2? и +2? от ? и около 99,7% случаев – между -3? и +3? от средней величины. Горизонтальная ось показывает значение некоторой переменной х. Вертикальная ось показывает ее частоту. Следовательно, совокупная площадь под кривой всегда равна 1. х имеет нормальное распределение со средней величиной и стандартным отклонением ? Рис. 23: Нормальное распределение Это обозначается так: x ? N(?, ?2). Формула его плотности такова: ?(x)=k exp–1/2(x–?)2/?2, где k является константой, подобранной таким образом, чтобы интеграл от плотности равнялся 1. Распределение симметрично относительно ?.
NORMAL DISTRIBUTION
Куполообразная кривая, отражающая симметричное вероятностное распределение непрерывной случайной переменной. Распределение характеризуется средней величиной и стандартным отклонением вверх или вниз, в к-рое укладываются две трети всех наблюдений, а 95% наблюдений - в два стандартных отклонения вверх или вниз от средней величиныПриводимый график отображает Н.р. Средняя из трех затемненных зон обозначает часть, лежащую между ординатой со значением +1 стандартное отклонение (квадратный корень средней арифметической квадратов отклонений отдельных точек от средней арифметической) и ординатой со значением -1 стандартное отклонение на оси Х. Затемненная область справа обозначает часть со значением более +1,96s стандартных отклонений, а затемненная область слева - часть со значением менее -1,96s стандартных отклонений.Приводится таблица областей кривой Н.р. между максимальной ординатой и ординатой со значением z, равным величине стандартных отклонений от средней (Х - средняя)/(стандартное отклонение). Данные таблицы показывают значение той части области кривой Н.р., к-рая лежит между максимальной ординатой (Y) и ординатой точек, находящихся на различном расстоянии от максимальной ординаты. Спустившись по таблице до значения z=1,00, определяем часть области кривой как 0,34. Поскольку кривая симметрична, то немногим более 68% этой области лежит в пределах от -1 до +1 стандартных отклонений. Это означает, что 68% величин отдельных точек Н.р. приходится на этот интервал.Процентная доля точек, приходящихся на тот или иной интервал, выраженный в единицах стандартного отклонения, может быть исчислена подобным образом путем удвоения показателя таблицы. Напр., 95% точек Н.р. приходится на интервал от + до -1,96 стандартного отклонения; 99% приходится на интервал от + до -2,576 стандартного отклонения.Чтобы продемонстрировать пользу кривой Н.р., предположим, что служащие набирают при тестировании при Н.р. в среднем 60 баллов со стандартным отклонением в двадцать баллов. Какими будут доли набравших более 85 и менее 50?Случай 1. По данным таблицы находим показатель, соответствующий z=1,25(=85-60)/20); он равен 0,39435. Т. о. мы определяем область на кривой Н.р. между максимальной ординатой (50%) и ординатой z. Область превышения данной ординаты отражает долю набравших более 85 баллов, к-рая приблизительно равна 11% (50%-0,39435).Случай 2. По данным таблицы находим показатель для z=-0,5 (=50-60); он равен 0,19146 и обозначает область между максимальной ординатой (50%) и ординатой z. Область ниже этой ординаты отражает долю набравших менее 50 баллов и приблизительно соответствует 31% (+50%-0,19146).